Algae Journals

Member Publications

2019

  1. Ramos, A.C., Regan, S., McGinn, P.J. and Champagne, P. (2019) Feasibility of a microalgal wastewater treatment for the removal of nutrients under non‐sterile conditions and carbon limitation. The Canadian Journal of Chemical Engineering 97, 1289-1298. https://doi.org/10.1002/cjce.23392
  2. McGinn, P.J., Park, K.C., Robertson, G., Scoles, L., Ma, W. and Singh, D. (2019) Strategies for recovery and recycling of nutrients from municipal sewage treatment effluent and hydrothermal liquefaction wastewaters for the growth of the microalgae. Algal Research 38, 101418. https://doi.org/10.1016/j.algal.2019.101418
  3. Banskota, A.H., Sperker, S., Stefanova, R., McGinn, P.J. and O’Leary, S.J.B. (2019) Antioxidant properties and lipid composition of selected microalgae. Journal of Applied Phycology 31 (1), 309-318.
    https://doi.org/10.1007/s10811-018-1523-1
  4. Markou, G., Wang, L., Ye, J. and Unc, A. (2019) Cultivation of microalgae on anaerobically digested agro-industrial wastes and by-products. In Application of Microalgae in Wastewater Treatment (Volume-II) Subtitle: Domestic and Industrial wastewater treatment. Sanjay Kumar Gupta and Faizal Bux (Ed.), Springer International. pp.147-172. https://doi.org/10.1007/978-3-030-13909-4_7
  5. Moreno-Garcia, L., Gariépy, Y., Bourdeau, N., Barnabé, S., Raghavan, G.S.V. (2019). Optimization of the proportions of four wastewaters in a blend for the cultivation of microalgae using a Mixture Design. Bioresource technol., 283 : 168-173. https://doi.org/10.1016/j.biortech.2019.03.067
  6. Seger, M., Unc, A., Holguin, O.F., Starkenburg, S. and Lammer, P. (2019) Nutrient-driven algal-bacterial dynamics in semi-continuous, pilot-scale photobioreactor cultivation of Nannochloropsis salina CCMP1776 with municipal wastewater nutrients. Algal Research, 39: 101457, doi: 10.1016/j.algal.2019.101457
  7. Moreno-Garcia, L., Gariépy, Y., Barnabé, S., Raghavan, G.S.V. (2019) Effect of environmental factors on the biomass and lipid production of microalgae grown in wastewaters. Algal Research, 41: 101521. https://doi.org/10.1016/j.algal.2019.101521

2018

  1. Markou, G., Wang, L., Ye, J. and Unc, A. (2018) Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns. Biotechnology Advances 36(4) 1238-1254. https://doi.org/10.1016/j.biotechadv.2018.04.003
  2. Benitez, M. B., Ochoa-Herrera, V., Champagne, P., Ramos, A., Torres, A. and Penafiel, R. (2018) Wastewater Treatment for Nutrient Removal with Ecuadorian Native Microalgae. Environmental Technology, 12:1-9. https://doi.org/10.1080/09593330.2018.1459874
  3. Bélanger-Lépine, F., Tremblay, A., Huot, Y., Barnabé, S. (2018) Cultivation of an algae-bacteria consortium in wastewater from an industrial park: Effect of environmental stress and nutrient deficiency on lipid production. Bioresource technology, 267 : 657-665. https://doi.org/10.1016/j.biortech.2018.07.099

2017

  1. Unc, A., Camargo-Valero, M.A. and Smith, S.R. (2017) Algal Research, Special Issue Editorial: Wastewater and Algae; Risk, biofuels and long-term sustainability. Algal Research 24 (Part B), A1-A1. https://doi.org/10.1016/j.algal.2017.05.004
  2. Unc, A., Monfet, E., Potter, A., Camargo-Valero, M.A. and Smith, S.R. (2018) Note to Editor: Microalgae cultivation for wastewater treatment and biofuel production: a bibliographic overview of past and current trends. Algal Research 24 (Part B), A2-A7. https://doi.org/10.1016/j.algal.2017.05.005
  3. Monfet, E. and Unc, A. (2017) Defining wastewaters used for cultivation of algae. Algal Research 24, 520-526. https://doi.org/10.1016/j.algal.2016.12.008
  4. Lammers, P., Huesemann, M., Boeing, W., Anderson, D.B., Arnold, R.G., Bai, X., Brown, L., Downes, C.M., Gujarathi, N., Holladay, J.E., Laur, P., Marrone, B.L., Mott, J.B., Nirmalakhandan, N., Ogden, K.L., Parsons, R., Richardson, J.W., Samocha, T., Sayre, R.T., Seger, M., Thomasson, A., Unc, A., Waller, P. and Olivares, J.A. (2017) Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 22: 166-186. https://doi.org/10.1016/j.algal.2016.11.021
  5. Unterlander, N., Champagne, P. and Plaxton, W. (2017) Optimization of Soluble Protein and Active Enzyme Extraction from the Oleaginous Microalga Chlorella vulgaris. Algal Research-2016-270.
  6. Collotta, M., Mabee, W., Champagne, P. and Tomasoni, G. (2017) Wastewater and Waste CO2 for Sustainable Biofuels from Microalgae. Algal Research, 29:12-21. https://doi.org/10.1016/j.algal.2017.11.013
  7. Ge, S. and Champagne, P. (2017)  Cultivation of Marine Macroalgae Chaetomorpha linum in Municipal Wastewater.  Environmental Science and Technology, 51(6):3558-3566. https://doi.org/10.1021/acs.est.6b06039
  8. Ge, S., Madill, M. and Champagne, P. (2017) Use of Freshwater Macroalgae Spirogyra sp. for the Treatment of Municipal Wastewaters and Biomass Production for Biofuel Applications. Biomass and Bioenergy, 111:213-223. https://doi.org/10.1016/j.biombioe.2017.03.014
  9. Moreno-Garcia, L., Adjallé, K., Barnabé, S. and Raghavan, G.S.V. (2017) Microalgae biomass production for a biorefinery system: Recent advances and way towards sustainability. Renewable & Sustainable Energy Reviews, 76 : 493-506. https://doi.org/10.1016/j.rser.2017.03.024
  10. Bourdeau, N., Bélanger-Lépine, F., Adjallé, K., Dubois-Caléro, N., Dosnon-Olette, R., Samson, G. and Barnabé, S. (2017) Mixotrophic Cultivation of an Algae-Bacteria Consortium in Aluminium Smelter Wastewaters (Quebec, Canada): High Nitrogen Concentration Increases Overall Lipid Production. Industrial Biotechnology, 13(5) : 260-269. https://doi.org/10.1089/ind.2017.0006

2016

  1. Jin, M. , Champagne, P. and Hall, G. (2016)  Effects of Different Substrates in the Mitigation of Algae-induced High pH Wastewaters in Free Water Surface Wetland Systems. Water Science and Technology, 75(1-2):1-10. https://doi.org/10.2166/wst.2016.401
  2. Wallace, J., Champagne, P. and Hall, G. (2016) Multivariate Statistical Analysis of Water Chemistry Dynamics in Three Facultative Wastewater Stabilization Ponds with Algal Blooms and pH Fluctuations. Water Research 96:155-165. https://doi.org/10.1016/j.watres.2016.03.046
  3. Collotta, M., Champagne, P., Mabee, W., Tomasoni, G., Alberti, M., Busi, L. and Leite, G.B. (2016)  Environmental Assessment of Co-location Alternatives for a Microalgae Cultivation Plant: A Case Study in the City of Kingston (Canada).  Energy Procedia 95C:29-36. https://doi.org/10.1016/j.egypro.2016.09.007
  4. Ge, S. and Champagne, P. (2016) Nutrient Removal, Microalgal Biomass Growth, Harvesting and Lipid Yield in Response to Centrate Wastewater Loadings. Water Research 88:604-612. https://doi.org/10.1016/j.watres.2015.10.054
  5. Anele, U.Y., Yang, W.Z., McGinn, P.J., Tibbetts, S.M., and McAllister, T.A. (2017) Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Canadian Journal of Animal Science 96 (3), 354-363. https://doi.org/10.1139/cjas-2015-0141
  6. Boens, B., Pilon, G., Bourdeau, N. and Barnabé, S. (2016) Hydrothermal liquefaction of a wastewater-native Chlorella sp.-bacteria consortium: biocrude production and characterization. Biofuels, 7 (6): 611-619. https://doi.org/10.1080/17597269.2016.1168027
  7. Schnurr, P.J.,  Molenda, O., Edwards, E.A., Espie, G.S. and Allen, D.G. (2016 ) Improved Biomass Productivity in Algal Biofilms through Synergistic Interactions between Photon Flux Density and CO2 Concentration. Bioresource Technology 219, 62-79. https://doi.org/10.1016/j.biortech.2016.06.129
  8. Schnurr, P.J., Espie, G.S. and Allen, D.G. (2016) The Effect of Photon Flux Density on Algal Biofilm Growth and Internal Fatty Acid Concentrations. Algal Research 16, 349-356. https://doi.org/10.1016/j.algal.2016.04.001
  9. Peniuk, G.T., Schnurr, P.J. and Allen, D.G., (2016) Identification and Quantification of Suspended Algae and Bacteria Populations using Flow Cytometry: Applications for Algae Biofuel and Biochemical Growth Systems. J Appl Phycol. 28, 95-104. DOI 10.1007/s10811-015-0569-6